PDF Print E-mail

2016

Hertz EPT, Kruse T, Davey NE, Mendez BL, Sigurdsson JO, Montoya G, Olsen JV, Nilsson J (2016)

A Conserved motif provides binding specificity to the PP2A-B56 phosphatase

Molecular Cell, Online

 

Zhang G, Mendez BL, Sedgwick GG, Nilsson J (2016)

Two functionally distinct kinetochore pools of BubR1 ensure accurate chromosome segregation

Nature Communications, 7: 12256

 

Sedgwick GG, Larsen MS, Lischetti T, Streicher W, Jersie-Christensen RR, Olsen JV, Nilsson J (2016)

Conformation-specific anti-Mad2 monoclonal antibodies for the dissection of checkpoint signaling

MAbs, 8, 689-97

 

Hein JB & Nilsson J (2016)

Interphase APC/C-Cdc20 inhibition by cyclin A2-Cdk2 ensures efficient mitotic entry

Nature Communications, 7: 10975

 

Wild T, Larsen MS, Narita T, Schou J, Nilsson J, Choudhary C

The Spindle Assembly Checkpoint is not essential for viability of human cells with genetically lowered APC/C activity

Cell Reports, 14: 1829-40

 

2015

Zhang G, Lischetti T, Hayward DG, Nilsson J (2015)

Distinct domains in Bub1 localize RZZ and BubR1 to kinetochores to regulate the checkpoint.

Nature Communications, 6:7162

 

Nilsson J (2015)

Mps1-Ndc80: one interaction to rule them all.

Oncotarget, 6(19):16822-3.

 

Nilsson J (2015)

Bub1/BubR1: Swiss Army Knives at kinetochores

Cell Cycle, online ahead of print.

 

Lischetti T & Nilsson J (2015)

Regulation of Mitotic Progression by the Spindle Assembly Checkpoint

Molecular and Cellular Oncology. 2(1), e970484

 

Nilsson J (2015)

Can sequestering of mitotic spindle proteins cause aneuploidy?

Bioessays, 37(3): 234.

 

Pedersen RT, Kruse T, Nilsson J, Oestergaard VH, Lisby M (2015)

TopBP1 is required at mitosis to reduce transmission of DNA damage to G1 daughter cells.

Journal of Cell Biology. 210(4) 565-82

 

 

2014

The internal Cdc20 binding site in BubR1 facilitates both spindle assembly checkpoint signalling and silencing

Lischetti T, Zhang G, Sedgwick G, Bolanos-Garcia V, Nilsson J

Nature Communications 5, 5563

 

Comprehensive identification of SUMO2/3 targets and their dynamics during mitosis

Schou J, Kelstrup CD, Hayward DG, Olsen JV, Nilsson J

PLoS One. June 27; 9(6) e100692

 

A direct role of Mad1 in the spindle assembly checkpoint beyond kinetochore recruitment of Mad2

Kruse T, Larsen MS, Sedgwick GG, Sigurdsson JO, Streicher W, Olsen JV, Nilsson J

EMBO reports. 15(3):282-90


Stable MCC binding to the APC/C is required for a functional spindle assembly checkpoint

Hein JB & Nilsson J (2014)

EMBO reports. 15(3): 264-72

 

A minimal number of MELT repeats supports all functions of KNL1 in chromosome segregation

Zhang G, Lischetti T, Nilsson J

J. Cell Science. 127:871-84

 

2013


The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

Zhang G, Beati H, Nilsson J, Wodarz A.

PLoS One. 2013 Apr 4;8(4):e60596.

 

Direct binding between BubR1 and B56-PP2A phosphatase complexes regulate mitotic progression.

Thomas Kruse1, Gang Zhang1,2, Marie Sofie Yoo Larsen1,2, Tiziana Lischetti1,2, Werner Streicher1, Tine Kragh Nielsen1, Sara Petersen Bjørn1 and Jakob Nilsson1,3

J. Cell. Science, 126: 1086-92

 

Mechanisms controlling the temporal degradation of Nek2A and Kif18A by the APC/C-Cdc20 complex.

Garry G. Sedgwick1,2*, Daniel G. Hayward1,2*, Barbara Di Fiore3, Mercedes Pardo4, Lu Yu4, Jonathon Pines3 and Jakob Nilsson1,2**

EMBO J, 32: 303-14

 

2012


Transcriptional intermediary factor 1γ binds to the anaphase-promoting complex/cyclosome and promotes mitosis

G G Sedgwick, K Townsend, A Martin, N J Shimwell, R J A Grand, G S Stewart, J Nilsson and A S Turnell

Oncogene, In press

 

Looping in on Ndc80 - How does a protein loop at the kinetochore control chromosome segregation?

Nilsson J.

BioEssays 34(12), 1070-77

 

The architecture of the BubR1 tetratricopeptide tandem repeat defines a protein motif underlying mitotic checkpoint-kinetochore communication.

Bolanos-Garcia VM, Nilsson J, Blundell TL.

Bioarchitecture. 2012 Jan 1;2(1):23-27.

 

Zhang G, Kelstrup CD, Hu XW, Hansen MJK, Singleton MR, Olsen JV, Nilsson J

The Ndc80 internal loop is required for recruitment of the Ska complex to establish end-on microtubule attachment to kinetochores

Journal of Cell Science, In press

 

Danielsen JR, Povlsen LK, Villumsen BH, Streicher W, Nilsson J, Wikström M, Bekker-Jensen S, Mailand N

DNA damage-inducible SUMOylation of HERC2 promotes RNF8 binding via a

novel SUMO-binding Zinc finger

Journal of Cell Biology, In press

 

2011

Bolanos-Garcia VM, Lischetti T, Matak-Vinković D, Cota E, Simpson PJ, Chirgadze DY, Spring DR, Robinson CV, Nilsson J, Blundell TL (2011)

Structure of a Blinkin-BUBR1 complex reveals an interaction crucial for kinetochore-mitotic checkpoint regulation via an unanticipated binding Site.

Structure,19(11),1691-700.

 

Nilsson J. (2011)

Cdc20 control of cell fate during prolonged mitotic arrest: do Cdc20 protein levels affect cell fate in response to antimitotic compounds?

Bioessays. 12, 903-9.

 

Yatime L, Hein KL, Nilsson J and Nissen P. (2011)

Structure of the RACK1 Dimer from Saccharomyces cerevisiae.

J.Mol.Biol., 411, 486-498

 

Nilsson, J*, Yekeraz, M*, Minshull, J and Pines, J. (2008)

The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction.

Nat. Cell. Biol. , 10, 1411-1420

 

Sengupta J*, Nilsson J*, Gursky R, Kjeldgaard M, Nissen P, Frank J. (2008)

Visualization of the eEF2-80S ribosome transition-state complex by cryo-electron microscopy.

J. Mol. Biol. , 382, 179-187

 

Taylor D. J., Nilsson, J., Merril A. R., Andersen G.R., Nissen, P. and Frank, J. (2007)

Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation.

EMBO J. 26, 2421-2431

Nilsson, J.*, Sengupta, J.*, Gursky, R., Nissen, P. and Frank, J. (2007)

Comparison of fungal 80S ribosomes by cryo-EM reveals diversity in structure and conformation of rRNA expansion segments.

J. Mol. Biol. 369, 429-38

 

Nilsson, J. and Nissen, P. (2005)

Elongation factors on the ribosome.

Curr. Opin. Struct. Biol. 15, 349-354

 

Nilsson, J.,  Sengupta, J., Frank, J. and Nissen P (2004)

Regulation of eukaryotic translation by the scaffold protein RACK1

EMBO Rep. 5(12), 1137-1141.

 

Sengupta, J.*, Nilsson, J.* , Gursky, R., Spahn, C.M.T., Nissen, P. and Frank, J. (2004) Identification of the versatile scaffold protein RACK1 on the eukaryotic ribosome by Cryo-EM.

Nat. Struct. Mol. Biol. 11(10), 957-62.

 

Jørgensen, R., Yates, S.P., Teal, D.J., Nilsson, J., Prentice, G., Merrill, A.R. and Andersen, G.R. (2004)

Crystal structure of ADP-ribosylated ribosomal translocase from Saccharomyces cerevisiae.
J.Biol.Chem. 279(44), 45919-45925.

 

Daelemans, D., Afonina, E., Nilsson, J., Werner, G., Kjems, J., De Clercq, E., Pavlakis, G.N., Vandamme, A.M. (2002)

A synthetic HIV-1 Rev inhibitor interfering with the CRM1-mediated nuclear export.
Proc Natl Acad Sci U S A., 99, 14440-5.

 

Nilsson, J., Weis, K. and Kjems, J. (2002)

The C-terminal extension of the small GTPase Ran is essential for defining the GDP-bound form.

J. Mol. Biol. 318, 583-593.

 

Poulsen, H.*, Nilsson, J.*, Damgaard, C.K., Egebjerg, J. and Kjems, J. (2001)

CRM1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain.

Mol. Cell. Biol. 21, 7862-7871.

 

Nilsson, J., Askjaer, P. and Kjems, J. (2001)

A role for the basic patch and the C terminus of RanGTP in regulating the dynamic interactions with importin beta, CRM1 and RanBP1

J. Mol. Biol. 305, 231-243.

 

Askjaer, P., Jensen, T.H., Nilsson, J., Englmeier, L. and Kjems, J. (1998)

The specificity of the CRM1-Rev nuclear export interaction is mediated by RanGTP

J. Biol. Chem. 273, 33414-33422.

 

* Shared first authorship

 

News

 

 

July 2016

Our PP2A-B56 motif paper

online in Molecular Cell

click here

 

July 2016

Our two pool BubR1 paper now

online at Nature Communications

click here

 

March 2016

Our Cdc20 phosphorylation paper

is now online at

Nature Communications

click here